The resting heart rate in beats per minute for the ESS 101j Joggling students are shown in the table.
| RHR/bpm |
|---|
| 62 |
| 63 |
| 65 |
| 68 |
| 68 |
| 68 |
| 69 |
| 69 |
| 71 |
| 72 |
| 77 |
| 79 |
| 79 |
| 82 |
| 83 |
| 86 |
| 88 |
| 91 |
| 94 |
| 94 |
For the resting heart rate data:
| Bins | Frequency | Relative Frequency f/n |
|---|---|---|
| _________ | _________ | _________ |
| _________ | _________ | _________ |
| _________ | _________ | _________ |
| _________ | _________ | _________ |
| _________ | _________ | _________ |
| Sums: | _________ | _________ |
Part two explores whether there is a relationship for the Joggling class students between their resting heart rates (RHR)in beats per minute and their body fat index (BFI).
| RHR | BFI |
|---|---|
| 62 | 10.8 |
| 63 | 14.5 |
| 65 | 16.4 |
| 68 | 05.5 |
| 68 | 11.7 |
| 68 | 30.5 |
| 69 | 11.3 |
| 69 | 21.7 |
| 71 | 23.7 |
| 72 | 33.5 |
| 77 | 23.5 |
| 79 | 20.6 |
| 79 | 31.2 |
| 82 | 17.8 |
| 83 | 45.5 |
| 86 | 34.9 |
| 88 | 38.1 |
| 91 | 21.8 |
| 94 | 34.0 |
| 94 | 45.9 |
| Basic Statistics | |||
|---|---|---|---|
| Statistic or Parameter | Symbol | Equations | Excel |
| Square root | =SQRT(number) | ||
| Sample size | n | =COUNT(data) | |
| Sample mean | x | Σx/n | =AVERAGE(data) |
| Sample standard deviation | sx or s | =STDEV(data) | |
| Sample Coefficient of Variation | CV | sx/x | =STDEV(data)/AVERAGE(data) |
| Linear Regression Statistics | |||
|---|---|---|---|
| Statistic or Parameter | Symbol | Equations | Excel |
| Slope | b | =SLOPE(y data, x data) | |
| Intercept | a | =INTERCEPT(y data, x data) | |
| Correlation | r | =CORREL(y data, x data) | |
| Coefficient of Determination | r2 | =(CORREL(y data, x data))^2 | |
| Statistic or Parameter | Symbol | Equations | Excel |
|---|---|---|---|
| Normal Statistics | |||
| Calculate a z value from an x | z | = |
=STANDARDIZE(x, µ, σ) |
| Calculate an x value from a z | x | = σ z + µ | =σ*z+µ |
| Calculate an x from a z | =µ + zc*sx/sqrt(n) | ||
| Find a probability p from a z value | =NORMSDIST(z) | ||
| Find a z value from a probability p | =NORMSINV(p) | ||
| Confidence interval statistics | |||
| Degrees of freedom | df | = n-1 | =COUNT(data)-1 |
| Find a zc value from a confidence level c | zc | =ABS(NORMSINV((1-c)/2)) | |
| Find a tc value from a confidence level c | tc | =TINV(1-c,df) | |
| Calculate an error tolerance E of a mean for n ≥ 30 using sx | E | =zc*sx/SQRT(n) | |
| Calculate an error tolerance E of a mean for n < 30 using sx. Should also be used for n ≥ 30. | E | =tc*sx/SQRT(n) | |
| Calculate a confidence interval for a population mean µ from a sample mean x and an error tolerance E | x-E≤ µ ≤x+E | ||
| Hypothesis Testing | |||
| Calculate t-critical for a two-tailed test | tc | =TINV(α,df) | |
| Calculate a t-statistic | t | ![]() |
=(x - µ)/(sx/SQRT(n)) |
| Calculate a two-tailed p-value from a t-statistic | p | = TDIST(ABS(t),df,2) | |